يقود توليد الطاقة إلى توليد مخلفات طاقة خاصة في صورة حرارة. يمكن جمع هذه الحرارة من خلال استخدام المواد الكهربائية الحرارية. ويمكن أن تنتج تلك المواد الكهربائية الحرارية طاقة كهربية من تدرج درجات الحرارة الناتج عن الحرارة المهدرة. من ثم، نقترح إعداد أنظمة كهربائية حرارية قائمة على (البوليمرات) العضوية وغير العضوية المتعددة لتوليد جهد من تدرج درجات الحرارة. تولد المواد الكهربائية الحرارية القائمة على البوليمرات جهدًا من تدرج درجات الحرارة المكونة القريبة من درجة حرارة جسم الإنسان (37 درجة مئوية). يهدف هذا الاقتراح إلى تدريب وتعليم طلاب المرحلة الثانوية في تخصصات كيميائية متعددة وعلوم البوليمرات والفيزياء وعلم المواد.
Research Project #
HSREP04-1114-220065
Pyrene Encapsulation in Micellar Systems- A Drug Delivery Model
Triton X-100 (TX-100) and sodium dodecylbenzene sulfonate (SDBS) are common, commercially available surfactants capable of forming aggregates known as micelles. These micelles have proven to have enormous potential in many diverse fields, including drug delivery. Investigation of micelles as a possible means of drug delivery is a current and active field of research, the long-term results of which could have enormous impact upon the fields of biomedical research. Pyrene will be encapsulated inside micellar systems of TX-100 and SDBS and will be analyzed using Dynamic Light Scattering (DLS) and fluorescence spectroscopy. Through study of pyrene fluorescence and DLS for each of these micellar systems, a great deal can be learned for improving our knowledge of these micelles for drug delivery systems. Additionally, fluorescence and DLS data will be useful as a general resource for the many further uses of these micellar systems.
Research Project #
SEED 2020_12
Spatio-temporal changes in Qatar in the wake of global climate change - with special reference to the floristic diversity of the country
The aim of the study is to assess the conservation status of Qatar’s endemic flora by understanding its floristic distribution and composition using modern GIS (Geographical Information System) and niche modelling techniques which involved obtaining high-spectral resolution imagery and bioclimatic layers. The study includes identification of current and possible future niches of important plants, such as Medicinal and Aromatic Plants (MAPs), and their distribution across Qatar in the possible microclimates of various edaphic characteristics. Part of the study constitutes evaluation of the therapeutic values of these endemic plants. Moreover, soil and water samples will be collected from various sites and analyzed. The soil samples will be tested for determining the nutrient content, water content, alkalinity, acidity, salinity, etc. The data obtained could be used to improve not just the understandings of our current knowledge of the changing climate of Qatar but will also help us to prepare ourselves for the future changing climate by suitable adaptation and mitigation measures.
Research Project #
UREP27-052-2-018
مركب ثلاثي-هيدروكسيد الألومنيوم - حمض الغاليك كبديل غير سام لمعيق اللهب القائم على ثلاثي أكسيد الأنتيموان المستخدم في منتجات الأسلاك والكابلات المصنوعة من الكلوريد متعدد الفينيل.
.
يستخدم ثلاثي أكسيد الأنتيموان (ATO) كمعيق للهب (FR) في تصنيع عزل الأسلاك والكابلات المصنوعة من الكلوريد متعدد الفينيل. إلا أن ثلاثي أكسيد الأنتيموان (ATO) مادة مسببة للسرطان وقابل للتراكم الحيوي. وللحد من استخدام مادة ثلاثي أكسيد الأنتيموان (ATO) السامة في الكلوريد متعدد الفينيل، نقترح اكتشاف إمكانية استخدام مادة حمض الغاليك (GA) الصديقة للبيئة لتغليف جزيئات ثلاثي-هيدروكسيد الألومنيوم (ATH) واستخدام مركب ثلاثي-هيدروكسيد الألومنيوم - حمض الغاليك كبديل لمادة ثلاثي أكسيد الأنتيموان (ATO) السامة في الكلوريد متعدد الفينيل كمعيق للهب. يحتوي حمض الغاليك (GA) بصورة طبيعية على البولي فينول الذي يحتوي على خصائص جيدة لإعاقة اللهب ويُعرف ثلاثي-هيدروكسيد الألومنيوم (ATH) على أنه معيق للهب. من المتوقع أن يقلل ثلاثي-هيدروكسيد الألومنيوم - حمض الغاليك استخدام ثلاثي أكسيد الأنتيموان (ATO) في صناعة الكلوريد متعدد الفينيل.
Research Project #
UREP27-052-2-018
Aluminum Trihydroxide-Gallic Acid Complex as Non-toxic Alternative to Antimony Trioxide based Flame (Retardants used in Polyvinyl Chloride based Cable and Wire Products
Antimony trioxide (ATO) is used as flame retardant (FR) in polyvinyl chloride (PVC)-based cable and wire insulation formulations. However, ATO is carcinogenic and is also bio-accumulative. To limit the use of toxic ATO in PVC, we propose to explore the possibility of using eco-friendly gallic acid (GA) to coat Aluminum trihydroxide (ATH) particles and use the ATH-GA complex as an alternative to toxic ATO as FR for PVC. GA is a naturally occurring polyphenol, which has good FR properties, and ATH is known to be a FR. ATH-GA is expected to reduce the use of toxic ATO in PVC formulations.
Research Project #
UREP29-204-2-055
Harvesting Waste Energy using Thermoelectric Materials
Over the past several decades the world has seen a tremendous growth in renewable energy sources, however the majority of our power is produced using fossil fuels. In addition, energy generation leads to generation of waste energy particularly in the form of heat. The waste energy in the form of heat can be harvested through the use of thermoelectric materials. These thermoelectric materials can produce electrical power from a temperature gradient developed due to waste heat. If the waste energy could be reclaimed, then it could be utilized to power a radio or charge a battery in a vehicle. For this type of usage scenario, an inorganic thermoelectric material which works only at high temperatures can be used as the temperature of the engine is very high. Therefore, we propose to prepare various p-type/n-type metal/metal based thermoelectric systems to generate voltage from a high temperature gradient. The metal/metal inorganic-based thermoelectric systems will also be characterized by measuring their electrical resistance and Seebeck voltage. However, for scenarios where the temperature difference is lower, organic thermoelectric materials which can work at human body temperature (37 °C) can be used in order to effectively generate electricity with a smaller temperature gradient. Organic thermoelectric materials are fabricated with conducting polymers. Therefore, we propose to prepare polypyrrole (a conducting polymer) based thermoelectric material and use them to generate voltage from a low temperature gradient. Polypyrrole films will be prepared on glass and plastic substrates using iron chloride or iron tosylate as catalyst by vapor phase and solution casting techniques. UV-Vis-NIR spectroscopy will be performed to confirm the formation of polypyrrole films. The electrical resistance and Seebeck voltage of the films will be measured. In addition, the electrical voltage and electrical power obtained from the thermoelectric devices will also be measured.